Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(14): E3163-E3172, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555730

RESUMO

Peroxisomes are eukaryotic organelles critical for plant and human development because they house essential metabolic functions, such as fatty acid ß-oxidation. The interacting ATPases PEX1 and PEX6 contribute to peroxisome function by recycling PEX5, a cytosolic receptor needed to import proteins targeted to the peroxisomal matrix. Arabidopsis pex6 mutants exhibit low PEX5 levels and defects in peroxisomal matrix protein import, oil body utilization, peroxisomal metabolism, and seedling growth. These defects are hypothesized to stem from impaired PEX5 retrotranslocation leading to PEX5 polyubiquitination and consequent degradation of PEX5 via the proteasome or of the entire organelle via autophagy. We recovered a pex1 missense mutation in a screen for second-site suppressors that restore growth to the pex6-1 mutant. Surprisingly, this pex1-1 mutation ameliorated the metabolic and physiological defects of pex6-1 without restoring PEX5 levels. Similarly, preventing autophagy by introducing an atg7-null allele partially rescued pex6-1 physiological defects without restoring PEX5 levels. atg7 synergistically improved matrix protein import in pex1-1 pex6-1, implying that pex1-1 improves peroxisome function in pex6-1 without impeding autophagy of peroxisomes (i.e., pexophagy). pex1-1 differentially improved peroxisome function in various pex6 alleles but worsened the physiological and molecular defects of a pex26 mutant, which is defective in the tether anchoring the PEX1-PEX6 hexamer to the peroxisome. Our results support the hypothesis that, beyond PEX5 recycling, PEX1 and PEX6 have additional functions in peroxisome homeostasis and perhaps in oil body utilization.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/fisiologia , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Arabidopsis/crescimento & desenvolvimento , Autofagia , Proteínas de Membrana/metabolismo , Transporte Proteico , Ubiquitinação
3.
Plant J ; 92(1): 110-128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742939

RESUMO

Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling ß-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Alelos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Gotículas Lipídicas , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Mutação , Transporte Proteico , Plântula/genética , Plântula/metabolismo , Alinhamento de Sequência , Ubiquitinação
4.
Plant Physiol ; 174(4): 2231-2247, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28600347

RESUMO

A variety of metabolic pathways are sequestered in peroxisomes, conserved organelles that are essential for human and plant survival. Peroxin (PEX) proteins generate and maintain peroxisomes. The PEX1 ATPase facilitates recycling of the peroxisome matrix protein receptor PEX5 and is the most commonly affected peroxin in human peroxisome biogenesis disorders. Here, we describe the isolation and characterization of, to our knowledge, the first Arabidopsis (Arabidopsis thaliana) pex1 missense alleles: pex1-2 and pex1-3pex1-2 displayed peroxisome-related defects accompanied by reduced PEX1 and PEX6 levels. These pex1-2 defects were exacerbated by growth at high temperature and ameliorated by growth at low temperature or by PEX6 overexpression, suggesting that PEX1 enhances PEX6 stability and vice versa. pex1-3 conferred embryo lethality when homozygous, confirming that PEX1, like several other Arabidopsis peroxins, is essential for embryogenesis. pex1-3 displayed symptoms of peroxisome dysfunction when heterozygous; this semidominance is consistent with PEX1 forming a heterooligomer with PEX6 that is poisoned by pex1-3 subunits. Blocking autophagy partially rescued PEX1/pex1-3 defects, including the restoration of normal peroxisome size, suggesting that increasing peroxisome abundance can compensate for the deficiencies caused by pex1-3 and that the enlarged peroxisomes visible in PEX1/pex1-3 may represent autophagy intermediates. Overexpressing PEX1 in wild-type plants impaired growth, suggesting that excessive PEX1 can be detrimental. Our genetic, molecular, and physiological data support the heterohexamer model of PEX1-PEX6 function in plants.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Autofagia , Teste de Complementação Genética , Homozigoto , Indóis/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação/genética , Estabilidade Proteica , Sementes/metabolismo , Temperatura
5.
PLoS One ; 9(10): e108217, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25286318

RESUMO

Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Homeodomínio/química , Proteínas Intrinsicamente Desordenadas/química , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma/metabolismo , Fatores de Transcrição/química
6.
Biol Proced Online ; 13: 6, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21843345

RESUMO

Although yeast two-hybrid experiments are commonly used to identify protein interactions, the frequent occurrence of false negatives and false positives hampers data interpretation. Using both yeast one-hybrid and two-hybrid experiments, we have identified potential sources of these problems: the media preparation protocol and the source of the yeast nitrogen base may not only impact signal range but also effect whether a result appears positive or negative. While altering media preparation may optimize signal differences for individual experiments, media preparation must be reported in detail to replicate studies and accurately compare results from different experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...